A feasible method for training classified data with sparsity

نویسندگان

چکیده

Family harmony is an important part of social stability and harmony. Facing the rapid growth divorce disputes, how to hear cases quickly fairly urgent matter be solved. Based on judgment documents from courts located in Southwest China, this paper studies evaluate predict whether or not a case should divorced. These are characterized by their unbalance sparsity; besides that, most variables bearing with missing value. We propose feasible method that shows high accuracy both training testing datasets. Concisely, oversampling "clustering" exploited data pre-preparation, recursive feature elimination applied deal selection. In we combined Random Forest XGboost derive more precise model achieves ninety percent accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Target Setting with Share Data

Data Envelopment Analysis (DEA) is a mathematical programming technique for evaluatingthe relative efficiency of a set of Decision Making Units (DMUs) and can also be utilized forsetting target. Target setting is one of the important subjects since according to its resultsefficiency can be increased. An important issue to be currently discussed, is to set targetwhile considering share data. The...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A Semismooth Newton Method for Tikhonov Functionals with Sparsity Constraints

Minimization problems in l for Tikhonov functionals with sparsity constraints are considered. Sparsity of the solution is ensured by a weighted l penalty term. The necessary and sufficient condition for optimality is shown to be slantly differentiable (Newton differentiable), hence a semismooth Newton method is applicable. Local superlinear convergence of this method is proved. Numerical exampl...

متن کامل

A feasible method for optimization with orthogonality constraints

Minimization with orthogonality constraints (e.g., X>X = I) and/or spherical constraints (e.g., ‖x‖2 = 1) has wide applications in polynomial optimization, combinatorial optimization, eigenvalue problems, sparse PCA, p-harmonic flows, 1-bit compressive sensing, matrix rank minimization, etc. These problems are difficult because the constraints are not only non-convex but numerically expensive t...

متن کامل

Spatio-Spectral Method for Estimating Classified Regions with High Confidence using MODIS Data

In studies like change analysis, the availability of very high resolution (VHR)/high resolution (HR) imagery for a particular period and region is a challenge due to the sensor revisit times and high cost of acquisition. Therefore, most studies prefer lower resolution (LR) sensor imagery with frequent revisit times, in addition to their cost and computational advantages. Further, the classifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: ['1742-6588', '1742-6596']

DOI: https://doi.org/10.1088/1742-6596/1978/1/012067